8th Jan 2016

For the inaugural Arabidopsis Research Roundup of 2016 we feature the final publications of UK researchers from 2015. Martin Howard kindly provides an audio description of a paper that looks at a fundamental aspect of transcriptional regulation, through the lense of the FLC gene, whilst his co-author Caroline Dean on that paper is an author on another manuscript that investigates RNA stability in the same FLC locus. Katja Graumann leads a paper that looks into gene expression at the periphery of the nucleus whilst Ian Colbeck looks at the effect of silver nanoparticles on plant growth. Ari Sadanandom is the UK lead of a study that investigates of SUMOylation and Ian Fricker looks at the role of a cytochrome P450 on the defence response. Finally Liam Dolan is involved in a comparative analysis of the genes involved in tip growth in the cells of plants and moss.

Wu Z, Ietswaart R, Liu F, Yang H, Howard M, Dean C (2015) Quantitative regulation of FLC via coordinated transcriptional initiation and elongation. Proc Natl Acad Sci U S A. Open Access

Martin Howard and Caroline Dean lead this study that comes out of the John Innes Centre and is the result of the same collaboration that featured in an ARR earlier in 2015. In this study they investigate the mechanisms that control the quantitative regulation of gene expression by focusing on the complex regulation of the FLOWERING LOCUS C (FLC). FLC expression is controlled by a chromatin silencing mechanism involving alternative polyadenylation of antisense transcripts. However they surprisingly show that the amount of RNA Polymerase II occupancy at FLC does not coincide very well with levels of FLC transcription. They used modeling to predict that there is a tight coordination between transcriptional initiation and elongation, which was validated by detailed measurements of the levels of FLC intronic RNA. Variation within initiation and elongation rates were significantly different and was coincident with changes in H3K36me3 and H3K4me2 levels in the FLC gene. The authors propose that chromatin state can influence transcriptional initiation and elongation rates and may be a general mechanism for quantitative gene regulation in a chromatin context.

Martin Howard kindly provides an audio description of this paper.

Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu LJ (2015) RNA-binding proteins At RZ-1B and At RZ-1C play a critical role in regulation of pre-mRNA splicing and gene expression during Arabidopsis development Plant Cell

This study investigates a set of previously mysterious RNA-binding proteins and is led by Chinese researchers with a UK contribution from Caroline Dean (JIC). They look at two Arabidopsis proteins, AtRZ-1B and At RZ-1C that have RNA-binding domains and are localised to the mysterious nuclear speckles. In addition these proteins physically interact with a range of serine/arginine-rich (SR) proteins and disrupting this binding causes a range of growth phenotypes that are similar to that observed in At rz-1b/At rz-1c double mutants. These include delayed seed germination, reduced stature, and serrated leaves and on the cellular level this is accompanied by defective splicing and global changes in gene expression. Interestingly AtRz-1C directly effects the expression of the floral repressor FLC, which links this work with other research in the Dean lab. Overall this highlights the important role of At RZ-1B/1C in RNA splicing and the link to many developmental phenotypes.

Smith S, Galinha C, Desset S, Tolmie F, Evans D, Tatout C, Graumann K (2015) Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus.

Katja Graumann and David Evans (Oxford Brookes) are the lead academics on this collaboration with the lab of Christophe Tatout from Clermont Ferrand in France. They are attempting to answer a long standing question in the field of the biology of the nucleus; whether genes that are located close to nuclear pore complexes have increased gene expression. They used the Lac Operator/ Lac Repressor (LacI-LacO) system to assess changes in gene expression when a loci is tethered to the NPC by attaching the LacI domain to the nucleoporins Seh1 or NUP50a. The Seh1 clones localised to the nuclear periphery and showed higher RNA and protein expression of Luc. When this interaction at the periphery was distributed, the higher levels of expression were abolished. The authors therefore show that association with the nuclear periphery is important for the regulation of gene expression.

Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V (2015) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify physiology of Arabidopsis thaliana plants. Plant Journal

Ian Colbeck (Essex) is the UK lead on this study that involves a collaboration between researchers in New Zealand, Belarus and Russia and focuses on the effect of silver nanoparticles (Ag NPs) on the growth of Arabidopsis seedlings. This type of nanoparticle is used for many difference applications so worries exist about the safety of their use. This study looks at the effect of Ag NPs on Arabidopsis root elongation and leaf expansion, both of which were inhibited at over [300mg/l] Ag NPs. In addition there were reductions of photosynthetic efficiency and accumulation of silver in plant tissues. They also showed that these particles altered the influx and efflux of metal ions whilst, although they were unable to catalyse hydroxyl radical generation, they did directly oxidise the major plant antioxidant, L-ascorbic acid. Overall the authors show that silver nanoparticles induce classical stress signalling responses but also illicit specific detrimental effects at the plasma membrane. At the whole plant level this study provides a worrying example for the role of Ag NPs on whole plant growth, even though the concentrations used in food preparation might be lower.

Crozet P, Margalha L, Butowt R, Fernandes N, Elias A, Orosa B, Tomanov K, Teige M, Bachmair A, Sadanandom A, Baena-González E (2015) SUMOylation represses SnRK1 signaling in Arabidopsis. Plant Journal

This pan-European study features researchers from Portugal, Austria and the UK’s Durham University, led by Ari Sadanandom. They investigate the role of the SnRK1 protein kinase, which is a key enzyme for modulating the plant stress response. This paper adds detail to the cellular mechanisms that regulate SnRK1 and they show that SnRK1 is SUMOylated by the SIZ1 E3 SUMO ligase. SnRK1 is ubiquitinated and degraded in a SIZ1-dependent manner that is lacking in siz1 mutants. Interestingly only active SnRK1 is degraded as the inactive SnRK1 protein is stable but can be easily degraded upon SUMOylation. Finally they show that SnRK1 is involved in a negative feedback loop wherein it controls its own SUMOylation and degradation that, in wildtype cells, prevents a potentially detrimental stress response.

Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzländer M, Fricker MD, Lipka V (2015) Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. Plant Cell

Mark Fricker (Oxford) is the UK research lead on this study that investigates the role of the atypical myrosinase PEN2 in the response to pathogen attack. PEN2 is targeted to both peroxisomes and mitochondria and can also form homo-oligomer complexes. PEN2 localised to mitochondria are immobilized following fungal invasion and this accompanies mitochondrial arrest. The substrate for PEN2 is produced by the cytochrome P450 monooxygenase CYP81F2, which is localized to the ER and moves toward immobilized mitochondria. The critical function of PEN2 in that organelle was confirmed by the result that showed exclusive mitochondria targeting could rescue pen2 mutant phenotypes. The authors show by live-cell imaging that arrested mitochondria in domains of plant-microbe interaction exhibit a pathogen-induced redox imbalance that may lead to production of intracellular signals.

Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JA, Becker JD (2015) A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol Plant.

Liam Dolan (Oxford) is an author on this study that is led from Portugal and is an investigation of the transcriptome of the model moss Physcomitrella patens throughout its life cycle. They also compare transcriptomes from P.patens and Arabidopsis, allowing the authors to identify transcription factors that are expressed in tip growing cells. Interestingly they identified differences in expression patterns that might account for the differences between tip growth in moss and the Arabidopsis root hairs, an area that is the expertise of the Dolan lab.