12th Aug 2015

The UK Arabidopsis Research Roundup this week includes a couple of EVO-DEVO-type studies that compare processes within different organisms (Physcomitrella and Cardamine) to those occurring in Arabidopsis. These include the evolution of both hormone signaling and leaf development. Elsewhere a cell-biological focused study looks at the factors that control formation of plasmodesmata whilst another manuscript investigates the details of a plants mechanism to avoid photoinhibition.

Yasumura Y1, Pierik R2, Kelly S3, Sakuta M4, Voesenek LA5, Harberd NP (2015) An Ancestral Role for Constitutive Triple Response 1 (CTR1) Proteins in Both Ethylene and Abscisic Acid Signaling Plant Physiology

GARNet Advisory Board Member Nick Harberd leads this study that investigates the evolution of the CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) protein, which has known to be involved in ethylene signalling for two decades. CTR1 is compared between mosses, lycophytes and angiosperms, showing that PpCTR1 from moss Physcomitrella patens has the same function and the Arabidopsis equivalent, indicating that this signaling pathway predates the land plant lineage. However PpCTR1 is also involved in ABA signaling, which is not the case with AtCTR1 and may be explained by the presence of an AtCTR1 homolog in angiosperms. The authors state that this work provides new insights into the molecular events that contributed to the adaptive evolution of regulatory mechanisms across plant species

Kirsten Knox, Pengwei Wang, Verena Kriechbaumer, Jens Tilsner, Lorenzo Frigerio, Imogen Sparkes, Chris Hawes, Karl Oparka (2015) Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation Plant Physiology

This study is led by Karl Oparka (Edinburgh) and Chris Hawes (Oxford Brookes) as well as including PIs from Exeter (Sparkes), Warwick (Frigerio) and St Andrews (Tilsner). The manuscript investigates formation of plasmodesmata (PD), which are known to form from endoplasmic reticulum (ER) via an intermediant termed the desmotubule. Members of the Reticulon (RTNLB) family of ER-tubulating proteins are found in the PD proteome are are associated with developing PD following cell division. The authors use super-resolution imaging to show that RTNLB6 colocalises with desmotubules. The mobility of these RTNLB proteins was show, using FRAP, to vary dependent on their positioning within a developing cell plate. Mutant studies show that RTNLB proteins act as important regulators of the formation of PDs and the authors discuss the wider potential roles of these proteins in this process.

Ware MA, Giovagnetti V, Belgio E, Ruban AV (2015) PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems J Photochem Photobiol B

Alexander Ruban (QMUL) continues a fine run of recent publications with this study that investigates plants that express increased levels of the photosynthetic PsbS protein, in the context of a subsequent increase in levels of non-photochemical fluorescence quenching (NPQ). In these PsbS overexpressors, there is increased amplitude of the irreversible NPQ component, qI, which likely results from aggregation of the LHCII antenna complex. Use of freeze-fracture electron microscopy show that quenched thylakoids have 3x more aggregated LHCII particles compared to those that are dark-adapted. Overall, these results demonstrate the importance of this LHCII aggregation in the NPQ mechanism whilst showing that structure of the PSII supercomplex plays no role in formation in process of quenching.

Cartolano M, Pieper B, Lempe J, Tattersall A, Huijser P, Tresch A, Darrah PR, Hay A, Tsiantis M (2015) Heterochrony underpins natural variation in Cardamine hirsuta leaf form Proc Natl Acad Sci U S A. 2015 Aug 4.

The study is a continuation of many years of work led by Miltos Tsiantis (who maintains links with Oxford University), aimed at increasing the understanding of how different morphological patterns develop. They compare leaf patterning in Arabidopsis (which has a simple leaf) and in the related plant, Cardamine (that has a complex leaf). They have identified a novel QTL from Cardamine that shows that age-dependent progression of leaf form underlies variation in this trait within species. Interestingly the QTL mapped to a cis-acting region controlling expression of the floral regulator FLC. Genotypes expressing low levels of FLC show early flowering and accelerated changes in leaf form, including faster leaflet production. These findings link reproductive timing with leaf development and the authors speculate that this may help to optimize resource allocation to the next generation.