3rd Jun 2015

We are unashamedly biased in this weeks Arabidopsis Research Roundup which firstly features work from the group of GARNet PI Jim Murray about the genetic interactions that define growth of lateral organs. Elsewhere we highlight papers that investigate a different role for CYCD3 genes in vascular development, the role of TFL1 in the shoot meristem and the ability of Arabidopsis seedling to tolerant a high light environment during ontogenesis.

Randall RS, Sornay E, Dewitte W, Murray JA (2015) AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property Journal Experimental Botany

Jim Murray and Walter Dewitte (Cardiff) lead this study that investigates the relationship between the AINTEGUMENTA (ANT) transcription factor and cyclin CYCD3;1 during lateral aerial organ (LAO) formation. LAO growth is determined by the both the number and size of cells that comprise the organ. During petal development, ant mutants have reduced cell number but increased cell size, demonstrating a 'compensatory mechanism' of growth. In contrast cycd3;1 mutants have increased cell size that results in larger petals, showing no compensatory mechanism. Interestingly ant cycd3;1 double mutants do show growth compensation in the same tissue. The authors propose that occurrence of the compensatory mechanism depends on at which time-point during distinct phases of cell division and cell expansion the growth defect occurs.


C Collins, Maruthi M.N and C Jahn (2015) CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. Journal Experimental Botany

Another study that investigates a different role of D-type cyclins is led by former Murray lab member, Carl Collins working at the Natural Resources Institute at the University of Greenwich. The factors that control cambial cell growth are poorly understood but the authors provide a link between the cell cycle and cambial differentiation by showing that CYCD3 subgroup of genes play a role in the process. Three CYCD3 genes are expressed in cambial tissue and the equivalent triple mutant has reduced hypocotyl and stem diameter, which is linked to a reduction in mitotic activity. Conversely, mutant xylem cells increased in size. This shows that CYCD3 genes provide a mechanism for controlling the correct proportions of cell growth during vascular development. This might provide a useful tool in the future study of this important process in woody plants.


Carvalho FE, Ware MA, Ruban AV (2015) Quantifying the dynamics of light tolerance in Arabidopsis plants during ontogenesis Plant Cell Environment

The group of Professor Alexander Ruban at Queen Marys University London utilise a novel methodology to measure the ‘intactness’ of photosystem II (PSII). In this paper they assess the amount of light required to inhibit PSII activity through the life cycle of Arabidopsis plants grown in short days. They show that maximum light tolerance occurs in 8-week old plants. Interestingly the light tolerance correlates with rates of electron transport yet did not coincide with the chlorophyll a/b ratios or anthocyanin content.


Baumann K, Venail J, Berbel A, Domenech MJ, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D (2015) Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. Journal Experimental Botany

The TFL1 gene is a repressor of flowering in the Arabidopsis shoot meristem. Researchers from the UK, USA, Spain and Italy, led by Desmond Bradley at the JIC show that ecoptocally expressed TFL1 can repress flowering outside of its normal expression domain. By comparing the expression of TFL1 with genes that determine floral identity (APETALA, LEAFY) the authors conclude that the shoot meristem is more sensitive to TFL1, allowing the maintenance of a vegetative state in this tissue.